top of page

REVISIONES, METAANÁLISIS Y ENSAYOS

Factores gestacionales en el desarrollo de enfermedades desmineralizantes óseas del infante: Revisión sistemática

Gestational factors in the development of bone demineralizing diseases of the infant: Systematic Review

Rev Cadena Cereb 2019; 3(2).jpg

Carlos Daniel Vásquez-Serrano (1), Andrea Ruiz-Andrade (1).

Volumen 3, Número 2

Julio-Diciembre 2019

Páginas 54-59

Afiliaciones:

  1. Licenciatura en Medicina, Universidad Autónoma Metropolitana. Ciudad de México, México

 

Correspondencia:

Carlos Daniel Vásquez-Serrano: carlosdanielvs8@gmail.com

​

2019 © Vásquez-Serrano CD, Ruiz-Andrade A. Factores gestacionales en el desarrollo de enfermedades desmineralizantes óseas del infante: Revisión sistemática.

​

Esta obra se distribuye bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC).

Visitantes de este artículo

Ver artículo en: REDIB     Zenodo     EuroPub     ResearchBib

​

https://doi.org/10.5281/zenodo.3903933

​

Conflictos de Interés: Los autores declaran que no tienen conflictos de interés.

Fuentes de Financiamiento: Ninguna.

​

Sugerencia de cita: Vásquez-Serrano CD, Ruiz-Andrade A. Factores gestacionales en el desarrollo de enfermedades desmineralizantes óseas del infante: Revisión sistemática. Rev Cadena Cereb. 2019; 3(2): 54-59.

​

Recibido: 30/08/2019.

Aceptado: 26/10/2019.

​

​

RESUMEN

​

La salud ósea comienza durante la etapa fetal y exige cubrir una cantidad adecuada de nutrientes in útero para la mineralización, asegurando un crecimiento óptimo en el organismo del recién nacido. Las enfermedades metabólicas óseas del neonato surgen como una complicación propia de la prematuridad, a causa de una privatización de los depósitos minerales que incrementan principalmente durante el tercer trimestre de gestación. Sin embargo, debido a la complejidad en la fisiología de la formación y remodelación ósea, es importante reconocer otros factores relacionados en el desarrollo de enfermedades desmineralizantes óseas. Se concretó la búsqueda de información en las plataformas Academic Search Premier, PubMed y MEDLINE acerca de los principales desencadenantes durante el periodo gestacional que han demostrado mayor asociación con la incidencia de estas patologías, bajo el cumplimiento de criterios de selección (anterioridad máxima de 5 años, importancia de la hipótesis con el enfoque del estudio, sin sesgos de padecer patologías óseas congénitas, validez demostrada por una correcta asociación estadística y calidad medida con herramientas proporcionadas por el programa de habilidades en lectura crítica español [CASPe]). Se encontró que las alteraciones en la densidad ósea caracterizadas por una reducción de la porción inorgánica del hueso, pueden ser propiciadas por una restricción de estimulación mecánica y de crecimiento intrauterino, al igual que factores modificables inducidos por la futura madre como déficit alimenticio, consumo de tabaco, uso de tratamientos farmacológicos específicos, infecciones, así como la presencia de un descontrol glucémico y otras alteraciones metabólicas.

​

Palabras Clave: Osteogénesis, Desmineralización, Enfermedades óseas metabólicas, Densidad ósea.

​

​

ABSTRACT

​

Bone health begins during the fetal stage and requires an adequate amount of intrauterine nutrients for mineralization, ensuring optimal growth in the newborn's organism. Bone metabolic diseases of the newborn arise as a complication of prematury, because of a privatization of mineral deposits that increase mainly during the third trimester of pregnancy. However, due to the complexity in the physiology of bone formation and remodeling, it is important to recognize other factors in the development of bone demineralizing diseases. The search for information on the Academic Search Premier, PubMed, MEDLINE platforms about the main triggers during the gestational period that have shown greater association with the incidence of these pathologies was completed, under the fulfillment of selection criteria (maximum prior to last 5 years, importance of the hypothesis with the project approach, without biases of suffering congenital bone pathologies, validity demonstrated by a correct statisticial association and quality measured with tools provided by Spanish critical reading skills program [CASPe]). It was found that alterations in bone density characterized by a reduction in the inorganic portion of bone, can be caused by a restriction of mechanical stimulation and intrauterine growth, as well as modifiable factors induced by the future mother, such as nutritional deficit, tobacco consumption, use of specific pharmacological treatments, infections, as well as the presence of a glycemic uncontrol and other metabolic alterations.

​

Key words: Osteogenesis, Demineralization, Bone disiease, Bone density.

​

​

REFERENCIAS

​

  1. Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018; 185(1): 240-75. DOI: 10.1016/ j.biomaterials.2018.09.028

  2. Thompson EM, Matsiko A, Farrell E, Kelly DJ, O’Brien FJ. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration. J Tissue Eng Regen Med. 2014; 9(8): 889–902. DOI: 10.1002/term.1918

  3. Florencio-Silva R, Rodrigues G, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res Int. 2015; 2015(1): 1–17. DOI: 10.1155/2015/421746

  4. Young MF. Skeletal biology: Where matrix meets mineral. Matrix Biol. 2016; 52-54(1): 1–6. DOI: 10.1016/ j.matbio.2016.04.003

  5. Bustabad S. Osteoporosis infantil. Protoc diagn ter pediatr. 2014; 1(2): 197-201. Disponible en: https:// www.aeped.es/documentos/protocolos-reumatologia-0

  6. Muñoz M, De la Higuera M, Fernández-García D, Alonso G, Reyes R. Densitometría ósea: indicaciones e interpretación. Endocrinol Nutr. 2005; 52(5): 224-7. DOI: 10.1016/ S1575-0922(05)71019-6

  7. Kovacs CS. Calcium, phosphorus, and bone metabolism in the fetus and newborn. Early Hum Dev. 2015; 91(11): 6238. DOI: 10.1016/j.earlhumdev.2015.08.007

  8. Salles JP. Bone metabolism during pregnancy. Ann Endocrinol. 2016; 77(2): 163–8. DOI: 10.1016/j.ando.2016.04.004

  9. Kovacs CS. Bone Development and Mineral Homeostasis in the Fetus and Neonate: Roles of the Calciotropic and Phosphotropic Hormones. Physiol Rev. 2014; 94(4): 1143– 218. DOI: 10.1152/physrev.00014.2014

  10. Moon RJ, Davies JH, Cooper C, Harvey NC. Vitamin D, and Maternal and Child Health. Calcif Tissue Int. 2019; 104(1): 113. DOI: 10.1007/s00223-019-00560-x

  11. Borg SA, Buckley B, Owen R, Campos A, Lu Y, Eyles D, et al. Early life vitamin D depletion alters the postnatal response to skeletal loading in growing and mature bone. PLoS ONE. 2018; 13(1): 1-17. DOI: 10.1371/journal.pone.0190675

  12. Di Marco N, Kaufman J, Rodda CP. Shedding Light on Vitamin D Status and Its Complexities during Pregnancy, Infancy and Childhood: An Australian Perspective. Int J Environ Res Public Health. 2019; 16(4): 538-55. DOI: 10.3390/ ijerph16040538

  13. Mølgaard C, Fleischer K. Vitamin D and bone health in early life. Proc Nutr Soc. 2003; 62(4): 823–8. DOI: 10.1079/ pns2003298

  14. Hyde NK, Brennan-Olsen SL, Mohebbi M, Wark JD, Hosking SM, Pasco JA. Maternal Vitamin D in pregnancy and offspring bone measures in childhood: The Vitamin D in pregnancy study. Bone. 2019; 124(1): 126-31. DOI: 10.1016/ j.bone.2019.04.013

  15. Fiscaletti M, Stewart P, Munns CF. The importance of vitamin D in maternal and child health: a global perspective. Public Health Rev. 2017; 38(19). DOI: 10.1186/s40985-0170066-3

  16. Rashid FB, Khatoon H, Hasnat MA, Amin R, Azad AK. Perinatal Complications in Diabetes Mellitus with Pregnancy: Comparison between Gestational Diabetes Mellitus (GDM) and Diabetes Mellitus Prior to Pregnancy. Mymensingh Med J. 2017; 26(1): 124-30. Disponible en: https:// www.ncbi.nlm.nih.gov/pubmed/28260766

  17. Johns E, Denison F, Norman J, Reynolds R. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends Endocrinol Metab, 2018; 29(11): 1-12. DOI: 10.1016/j.tem.2018.09.004

  18. Schushan-Eisen I, Cohen M, Leibovitch L, Maayan-Metzger A, Strauss T.  Bone Density Among Infants of Gestational Diabetic Mothers and Macrosomic Neonates. Matern Child Health J, 2014; 19(3):  578–82. DOI: 10.1007/s10995-014-15419

  19. Billionnet C, Mitanchez D, Weill A, Nizard J, Alla F, Hartemann A, et al. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia. 2017; 60(4): 636–44. DOI: 10.1007/s00125-017-4206-6

  20. Harrison CM, Gibson AT. Osteopenia in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013; 98(3): 272-5. DOI: 10.1136/archdischild-2011-301025

  21. Ríos-Moreno MP, Salinas-López MP, Pérez-Ornelas NB, Barajas-Serrano TL, Barrera-de León JC. Factores de riesgo asociados a osteopenia del prematuro en una terapia intensiva neonatal de referencia. Acta Pediatr Mex, 2016; 37 (2): 69-78. Disponible en: http://www.scielo.org.mx/ scielo.php?script=sci_arttext&pid=S0186-23912016000200 069

  22. Montaner A, Fernández C, Calmarza P, Rite G, Oliván M. Factores de riesgo y marcadores bioquímicos de la enfermedad metabólica ósea del recién nacido prematuro. Rev Chil   Pediatr.   2017;   88(4):   487-94.   DOI:   10.4067/S037041062017000400007

  23. Rustico SE, Calabria AC, Garber SJ. Metabolic bone disease of prematurity. J Clin Transl Endocrinol. 2014; 1(3): 85– 91. DOI: 10.1016/j.jcte.2014.06.004

  24. Tapia-Rombo CA, Villalobos-Granja KP, Ramírez-Pérez J, Uscanga-Carrasco H, Robles-Espinosa LA. Aparición de la osteopenia en recién nacidos de pretérmino en un servicio de neonatología. Bol Med Hosp Infant Mex. 2013; 70 (6): 432-40. Disponible en: http://www.scielo.org.mx/ scielo.php?script=sci_arttext&pid=S1665-11462013000600 004

  25. Nandez-Germán SL, Catrejón-González MO, Cruz MM. Efectos del ejercicio sobre la densidad mineral ósea en pacientes con osteopenia. Rev Sanid Milit Mex. 2009; 63 (1): 18-27. Disponible en: https://www.medigraphic.com/ pdfs/sanmil/sm-2009/sm091d.pdf

  26. Castiglioni C, Suárez B, Anwandter G, Cortés R. Akinecia/ Hipokinesia fetal: Una ventana al movimiento fetal durante el desarrollo. Orientación clínica, etiología y diagnóstico. Rev Med Clin Condes. 2016; 27(4): 514-28. DOI: 10.1016/ j.rmclc.2016.07.011

  27. Castiglioni C, Suárez B, Anwandter G, Cortés R. Akinecia/ Hipokinesia fetal: Una ventana al movimiento fetal durante el desarrollo. Orientación clínica, etiología y diagnóstico. Rev Med Clin Condes. 2016; 27(4): 514-28. DOI: 10.1016/ j.rmclc.2016.07.011

  28. Klein LL, Gibbs RS. Infection and preterm birth. Obstet Gynecol Clin North Am. 2005; 32(3): 397-410. DOI: 10.1016/ j.ogc.2005.03.001

  29. Goldenberg RL, Culhane JF, Johnson DC. Maternal infection and adverse fetal and neonatal outcomes. Clin Perinatol. 2005; 32(3): 523-59. DOI: 10.1016/j.clp.2005.04.006

  30. Yeste D, Clemente M, Campos A, Fábregas A, Soler L, Carrascos A. Osteoporosis en pediatría. Rev Esp Endocrinol Pediatr. 2017; 8(1): 73-85. DOI: 10.3266/ RevEspEndocrinolPediatr.pre2017.Apr.389

  31. Dochez V, Ducarme G. Primary hyperparathyroidism during pregnancy. Arch Gynecol Obstet. 2014; 291(2): 25963. DOI: 10.1007/s00404-014-3526-8

  32. Hirsch D, Kopel V, Nadler V, Levy S, Toledano Y, Tsvetov G. Pregnancy Outcomes in Women With Primary Hyperparathyroidism. J Clin Endocrinol Metab. 2015; 100(5): 2115–22. DOI: 10.1210/jc.2015-1110

  33. Diaz-Soto G, Linglart A, Sénat MV, Kamenicky P, Chanson P. Primary hyperparathyroidism in pregnancy. Endocrine. 2013; 44(3): 591–7. DOI: 10.1007/s12020-013-9980-4

  34. Malekar-Raikar S, Sinnott BP. Primary Hyperparathyroidism in Pregnancy -A Rare Cause of Life-Threatening Hypercalcemia: Case Report and Literature Review. Case Rep Endocrinol. 2011; 2011(1): 1–6. DOI: 10.1155/2011/520516

  35. Koren G, Ornoy A. The role of the placenta in drug transport and fetal drug exposure. Expert Rev Clin Pharmacol. 2018; 11(4): 373–85. DOI: 10.1080/17512433.2018.1425615

  36. Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T, Cooper C. Neonatal Bone Mass: Influence of Parental Birthweight, Maternal Smoking, Body Composition, and Activity During Pregnancy. J Bone Miner Res. 2001; 16(9). 1694–703. DOI: 10.1359/jbmr.2001.16.9.1694

  37. Huang SH, Weng KP, Huang SM, Liou HH, Wang CC, Ou SF, et al. The effects of maternal smoking exposure during pregnancy on postnatal outcomes: A cross sectional study. J Chin Med Assoc. 2017; 80(12): 796–802. DOI: 10.1016/j.jcma.2017.01.007

  38. Parviainen R, Auvinen J, Pokka T, Serlo W,  Sinikumpu J. Maternal smoking during pregnancy is associated with childhood bone fractures in offspring – A birth-cohort study of 6718 children. Bone. 2017; 101(1): 202–5. DOI: 10.1016/j.bone.2017.05.007

  39. Monjardino T, Henriques A, Moreira C, Rodrigues T, Adubeiro N, Nogueira L, et al. Gestational Weight Gain and Offspring Bone Mass: Different Associations in Healthy Weight Versus Overweight Women. J Bone Miner Res. 2019; 34(1): 38-48. DOI: 10.1002/jbmr.3587

  40. Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T, et al. Neonatal Bone Mass: Influence of Parental Birthweight, Maternal Smoking, Body Composition, and Activity During Pregnancy. J Bone Miner Res. 2001; 16(9): 1694-703. DOI: 10.1359/jbmr.2001.16.9.1694

  41. Graça MI, Silva J, Guimarães H. Metabolic bone disease of prematurity – a report of five cases. J Pediatr Neonat Individual Med. 2019; 8(1): 1-11. DOI: 10.7363/080120

bottom of page